A theory of finite strain magneto-poromechanics
نویسندگان
چکیده
The main purpose of this paper is the multi-physics modeling of magnetically sensitive porous materials. We develop for this a magneto-poromechanics formulation suitable for the description of such a coupling. More specifically, we show how the current state of the art in the mathematical modeling of magneto-mechanics can easily be integrated within the unified framework of continuum thermodynamics of open media, which is crucial in setting the convenient forms of the state laws to fully characterize the behavior of porous materials. Moreover, due to the soft nature of these materials in general, the formulation is directly developed within the finite strain range. In a next step, a modeling example is proposed and detailed for the particular case of magneto-active foams with reversible deformations. In particular, due to their potentially high change in porosity, a nonlinear porosity law recently proposed is used to correctly describe the fluid flow through the interconnected pores when the solid skeleton is finitely strained causing fluid release or reabsorption. From the numerical point of view, the variational formulation together with an algorithmic design is described for an easy Email address: [email protected] (B. Nedjar) Preprint submitted to J. of the Mechanics and Physics of Solids August 31, 2015 implementation within the context of the finite element method. Finally, a set of numerical simulations is presented to illustrate the effectiveness of the proposed framework.
منابع مشابه
Vibration Analysis of Magneto-Electro-Elastic Timoshenko Micro Beam Using Surface Stress Effect and Modified Strain Gradient Theory under Moving Nano-Particle
In this article, the free vibration analysis of magneto-electro-elastic (MEE) Timoshenko micro beam model based on surface stress effect and modified strain gradient theory (MSGT) under moving nano-particle is presented. The governing equations of motion using Hamilton’s principle are derived and these equations are solved using differential quadrature method (DQM). The effects of dimensionless...
متن کاملVibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field
The damping vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam resting on viscoelastic foundation based on nonlocal strain gradient elasticity theory (NSGT) is studied in this article. For this purpose, by considering the effects of Winkler-Pasternak, the viscoelastic medium consists of linear and viscous layers. with respect to the displacement field in accordance with th...
متن کاملWave propagation analysis of magneto-electro-thermo-elastic nanobeams using sinusoidal shear deformation beam model and nonlocal strain gradient theory
The main goal of this research is to provide a more detailed investigation of the size-dependent response of magneto-electro-thermo-elastic (METE) nanobeams subjected to propagating wave, ...
متن کاملRotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen’s nonlocal model
The article is concerned with a new nonlocal model based on Eringen’s nonlocal elasticity and generalized thermoelasticity. A study is made of the magneto-thermoelastic waves in an isotropic conducting thermoelastic finite rod subjected to moving heat sources permeated by a primary uniform magnetic field and rotating with a uniform angular velocity. The Laplace transform technique with respect ...
متن کاملClamped-Free Non Homogeneous Magneto Electro Elastic Plate of Polygonal Cross-Sections with Hydrostatic Stress and Gravity
In this article, the influence of hydrostatic stress and gravity on a clamped- free non homogeneous magneto electro elastic plate of polygonal cross sections is studied using linear theory of elasticity. The equations of motion based on two-dimensional theory of elasticity are applied under the plane strain assumption of prestressed and gravitated magneto electro elastic plate of polygonal cros...
متن کامل